YO’L HARAKATI XAVFSIZLIGINI TA’MINLASHDA SUN’IY INTELLEKT TEXNOLOGIYALARIDAN FOYDANALISH: MUAMMOLAR VA ISTIQBOLLAR YECHIMLAR
Main Article Content
Аннотация:
Tadqiqot mavzusi yo’l harakati xavfsizligi sohasida Sun’iy intellekt texnologiyalaridan foydalanishni tavsiflovchi qonun normalari va ilmiy manbalardir. Tadqiqot ob’ekti - yo’l harakati xavfsizligi sohasida Sun’iy intellekt texnologiyalaridan foydalanish asoslarini belgilovchi ijtimoiy munosabatlar. Normativ-huquqiy hujjatlar va ilmiy adabiyotlarni o’rganish natijasida muallif yo’l harakati xavfsizligini ta’minlash sohasida Sun’iy intellekt texnologiyalarini joriy etish va rivojlantirish yo’nalishlarini har tomonlama tahlil qiladi, ko’rib chiqilayotgan sohani qonunchilik bilan tartibga solishning ayrim ilmiy muammolarini belgilaydi. Tadqiqotning metodologik asosini bilishning umumiy ilmiy va xususiy ilmiy usullari (formal-huquqiy, analitik, tizimli metod, tahlil, sintez, modellashtirish, taqqoslash va boshqalar) majmuasi tashkil etdi. Natijada muallif, bir tomondan, yo’l harakati sohasida Sun’iy intellekt texnologiyalarini yanada izchil joriy etish va rivojlantirishni hamda uning xavfsizligini ta’minlaydigan qulay tashkiliy-huquqiy sharoitlar yaratish zarur, degan xulosaga keladi.
Article Details
Как цитировать:
Библиографические ссылки:
H. K. Lo and H. F. Chow, “Adaptive traffic control system: Control strategy, prediction, resolution, and accuracy,” Journal of Advanced Transportation, vol. 36, no. 3, pp. 323–347, 2002.
A. Hamilton, B. Waterson, T. Cherrett, A. Robinson, and I. Snell, “The evolution of urban traffic control: changing policy and technology,” Transportation Planning and Technology, vol. 36, no. 1, pp. 24–43, 2013.
J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-driven intelligent transportation systems: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–1639, 2011.
S. Lin, Q.-J. Kong, and Q. Huang, “A model-based demand-balancing control for dynamically divided multiple urban subnetworks,” Journal of Advanced Transportation, vol. 50, no. 6, pp. 1046–1060, 2016.
D. Gettman, S. G. Shelby, L. Head, D. M. Bullock, and N. Soyke, “Data-driven algorithms for real-time adaptive tuning of offsets in coordinated traffic signal systems,” Transportation Research Record, no. 2035, pp. 1–9, 2007.
A. Csikõs, T. Tettamanti, and I. Varga, “Nonlinear gating control for urban road traffic network using the network fundamental diagram,” Journal of Advanced Transportation, vol. 49, no. 5, pp. 597–615, 2015.
A. Stevanovic, “Adaptive traffic control systems: Domestic and foreign state of practice,” NCHRP Synthesis 403, Transportation Research Board, Washington, D.C., 2010.
N. H. Gartner, C. Stamatiadis, and P. J. Tarnoff, “Development of advanced traffic signal control strategies for intelligent transportation systems: multilevel design,” Transportation Research Record, no. 1494, pp. 98–105, 1995.
W. Yang, Study on Self-adaptive Coordinated Control Based on Close-loop Feedback for Urban Traffic Signals, Tongji university, Shanghai, 2015.
J. D. C. Little, M. D. Kelson, and N. H. Gartner, “MAXBAND: a program for setting signal on arteries and triangular network,” Transportation Research Record, no. 795, pp. 40–46, 1981.
G. Sims A, The Sydney coordinated adaptive traffic system. Engineering Foundation Conference on Research Directions in Computer Control of Urban Traffic Systems, Calif, USA, 1979.
Y.-T. Wu and C.-H. Ho, “The development of Taiwan arterial traffic-adaptive signal control system and its field test: A Taiwan experience,” Journal of Advanced Transportation, vol. 43, no. 4, pp. 455–480, 2009.
N. H. Gartner, “OPAC: A demand-responsive strategy for traffic signal control,” Transportation Research Record, vol. 1983, no. 906, pp. 75–81, 1983.
P. Mirchandani and L. Head, “A real-time traffic signal control system: architecture, algorithms, and analysis,” Transportation Research Part C: Emerging Technologies, vol. 9, no. 6, pp. 415–432, 2001.
E. Kosmatopoulos, M. Papageorgiou, C. Bielefeldt et al., “International comparative field evaluation of a traffic-responsive signal control strategy in three cities,” Transportation Research Part A: Policy and Practice, vol. 40, no. 5, pp. 399–413, 2006.
J. Zhao, Y. Liu, and P. Li, “A network enhancement model with integrated lane reorganization and traffic control strategies,” Journal of Advanced Transportation, vol. 50, no. 6, pp. 1090–1110, 2016.
C. Meneguzzer, “Dynamic process models of combined traffic assignment and control with different signal updating strategies,” Journal of Advanced Transportation, vol. 46, no. 4, pp. 351–365, 2012.
M. Papageorgiou, M. Ben-Akiva, J. Bottom et al., “Chapter 11 ITS and Traffic Management,” in Transportation, vol. 14 of Handbooks in Operations Research and Management Science, pp. 715–774, Elsevier, 2007.
N. Jiang, “Optimal signal design for mixed equilibrium networks with autonomous and regular vehicles,” Journal of Advanced Transportation, vol. 2017, pp. 1–13, 2017.
J. Hu, M. D. Fontaine, B. B. Park, and J. Ma, “Field evaluations of an adaptive traffic signal—Using private-sector probe data,” Journal of Transportation Engineering, vol. 142, no. 1, Article ID 04015033, 2016.
D. Manolis, I. Papamichail, E. B. Kosmatopoulos, and M. Papageorgiou, “Automated tuning of ITS management and control systems: Results from real-life experiments,” Transportation Research Part C: Emerging Technologies, vol. 66, pp. 119–135, 2016.
