ДИФФЕРЕНЦИАЦИЯ ЧЕТЫРЕХМЕРНОЙ НИЛЬПОТЕНТНОЙ АЛГЕБРЫ
Main Article Content
Аннотация:
Дифференциация — одно из фундаментальных понятий математики. Дифференциации также играют важную роль в алгебре. Существуют различные обобщения дифференциаций. К ним относятся антидифференциации, δ-дифференциации, тернарные дифференциации и (α,β,γ)-дифференциации. В данной работе дифференциация четырехмерных нильпотентных алгебр демонстрируется путем доказательства локальной дифференциации.
Article Details
Как цитировать:
Библиографические ссылки:
Ayupov Sh.A.,Elduque A., Kudaybergenov K.K. Local derivations and automorphisms of Cayley algebras Т.: Journal of Pure and Applied Algebra. - 2023. - 227(5), 107277.
Arzikulov F., Karimjanov. I.A. A criterion of local derivations on the seven-dimensional simple Malcev algebra. Operators and Matrices. 2022, 16(2), 495-511
Kadison R.V. Local derivations, Journal of Algebra Т.:Vol.130,p.494-509, 1990.
De Graaf W.A. Classification of nilpotent associative algebras of small dimension Т.:. Int. J. AlgebraComput. 28(1), 2018, 133-161
Islomjon B., Madyor Q. TABIIY FANLARDA MATEMATIKANI QO ‘LLANILISHI //Research and Publications. – 2024. – Т. 1. – №. 1. – С. 350-352.
O’G B. I. G. A. et al. UCH O’LCHAMLI NILPOTENT ALGEBRANING DIFFERENSIALLASHI //Science and innovation. – 2024. – Т. 3. – №. Special Issue 18. – С. 285-289.
