

THE ESSENCE AND STAGES OF DEVELOPMENT OF LIQUIDITY BALANCED IN THE ANALYSIS OF ENTERPRISE ACTIVITY

Ataniyazova Maksuda Baltabayevna

Head of the Department of General Economic Sciences, Tashkent University of Applied Sciences, Uzbekistan,
 Tashkent maksudaataniyazova81@gmail.com
<https://doi.org/10.5281/zenodo.13324922>

Annotation: Balanced liquidity is one of the important indicators of the company's financial condition. Liquidity measures the company's ability to cover its short-term financial obligations and how often it is replenished with the necessary funds to continue operations. This helps to understand the company's financial situation, the risk of bankruptcy, and the ability to compete freely.

Keywords: liquidity, risk of bankruptcy, indicators, enterprise balance sheet, enterprise, Obligations, debt funds, main liquid assets.

The liquidity of the enterprise's balance sheet is one of the main factors determining the nature of the enterprise's financial situation. Liquidity of the enterprise's balance sheet means the level of coverage of the liabilities indicated in the balance sheet by the liquid funds on the balance sheet [1-5]. These indicators were used in order to avoid the risk of bankruptcy and bankruptcy during the free competition of enterprises in the market economy. In other words, liquidity means the company's ability to pay its debts both in the total amount and within the specified period with the available funds[5-13]. The following are the main indicators of the liquidity of the enterprise balance sheet: Total liquidity ratio, current liquidity ratio, intermediate liquidity ratio and absolute liquidity ratio. The overall liquidity ratio of the enterprise balance sheet is important for all enterprises and organizations. At the same time, it expresses the potential possibilities of covering the external and short-term obligations of the enterprise in front of the organizations that have economic relations with it, and determines the long-term and short-term obligations in the form of currency. The current liquidity ratio is of great interest to all buyers, owners of shares and corporate bonds[14-27]. Mutual economic settlements, receiving dividends on shares depends on the level of liquidity of the company's balance sheet. The current liquidity coefficient is found in the form of the ratio of the sum of all the working capital of the enterprise and the sum of short-term bond sources. The intermediate coefficient of liquidity of the enterprise's balance sheet represents the ratio between the enterprise's working capital and short-term liabilities [28-33]. The intermediate coefficient of liquidity is called a quick, critical and fixed indicator in the economic literature.

Slow liquid assets A3 - from 6 months to 1 year.

difficult liquid assets A4 - more than 1 year.

A1 - Cash and other short-term assets.

A2 - Accounts receivable.

A3 - Reserves and other tangible working capital with expenses

A4 - Fixed assets and long-term financial investments.

In order to determine the liquidity of the enterprise, it is necessary to divide its liabilities into appropriate groups in terms of payment. These are also divided into four groups.

Obligations payable immediately (P1) - up to 2 months.

Short-term obligations (P2) - from 2 to 6 months.

Long-term liabilities (P3) from 6 months to 1 year.

Permanent liabilities (P4) more than 1 year.

P1 - Overdue loans with wages.

P2 - Short-term loans and debt funds.

P3 - Long-term loans and debt funds.

P4 - Private capital (own funds) and equivalent funds.

The following formula recommended by A.D. Sheremet can be used to determine the total liquidity of the enterprise's balance sheet. (Buxgalterskiy uchet / Pod red. P.S. Bezrukix.-M.: Bugalterskiy uchst, 1994, - 508-b.)

$$Q_{UL} = \frac{a_1 A_1 + a_2 A_2 + a_3 A_3}{a_1 P_1 + a_2 P_2 + a_3 P_3}$$

In this: a_i - the essentiality coefficient of each group;

A_i - groups of funds in the asset part of the balance sheet according to the level of liquidity;

P_i - groups of the passive part of the balance sheet according to the level of liquidity.

Now we will give examples of ways of calculating the indicators representing the liquidity of the enterprise's

balance sheet, determining the sum of the main liquid assets and liabilities [34-40].

Indicators representing the liquidity of the enterprise's balance sheet and ways of calculating them.a

Determining the amount of the main liquid assets and liabilities of the enterprise balance sheet [40-45].

Calculation of indicators representing the liquidity of the enterprise's balance sheet

Indicators	Year to date	At the end of the	Difference (+,-)
1. Current assets ($A1+A2+A3$)	5660	6000	+340
2. Current passives ($P1+P2$)	2530	2500	-30
3. Cash and other assets	300	450	+ 150

	Indicators		
Current liquidity ratio	Quick Liquidity Ratio	Absolute liquidity ratio	
Current assets	Cash, receivables	Funds	
Current liabilities (liabilities)	Current liabilities (liabilities)	Current liabilities (liabilities)	
$A1+A2+A3$	$A1+A2$	$A1$	
$P1+P2$	$P1+P2$	$P1+P2$	
1 sh. 300 q.	1sh.(170+...+200)+... (220+...+290)- -2a Sh. 7q.	1 sh. (170+...+200)	
1 sh.540 - (400+...410)	1 sh. 540- (400+...+410)	1 sh.500 - (400+410)	
4. Debtors	1900	2000	+ 100

5. Current liquidity ratio (1Q : 2Q)	2.237	2.400	+ 0.163
6. Quick Liquidity Ratio (3Q + 4Q) : 2Q	0.870	0.980	+ 0.110

A group of active indicators	Amount, thousand sums		Passive liabilities (group)	Amount, thousand sums	
	year to date	at the end of the year		year to date	at the end of the year
$A1$	300	450	$P1$	1530	1650
$A2$	1900	2000	$P2$	1000	850
$A3$	3460	3550	$P3$	2700	2700
$A4$	3685	3700	$P4$	4115	4500
Balance	9345	9700	Balance	9345	9700

7. Absolute liquidity ratio (3Q : 2Q)	0.119	0.180	+ 0.061
---------------------------------------	-------	-------	---------

Quick liquidity level of the enterprise's balance sheet (Q_{TL})

$$Q_{TL} = \frac{A_1}{P_1} + \frac{A_2}{P_2} = \frac{A_{12}}{P_{12}};$$

$$Q_{TLD} = \frac{A_{12}}{AM_{123}} \cdot \frac{AM_{123}}{A_1} \cdot \frac{A_1}{A_2} \cdot \frac{A_2}{P_1} \cdot \frac{P_1}{P_{12}}$$

The dependence of these indicators can be expressed as follows using the reduction method of the mathematical model:

$$U = x_1 * x_2 * x_3 * x_4 * x_5 = \prod_{i=1}^5 x_i; (i=1,5)$$

In this: U- The degree of quick liquidation of the enterprise's balance sheet;

X_1 - The contribution of quick liquid funds to all working capital;

X_2 - Provision of immediately liquid funds with working capital;

X_3 - The share of immediately liquid funds (assets) in quickly liquid assets;

X_4 - The degree of provision of immediately payable liabilities with quickly liquid assets;

X_5 - Contribution of current liabilities to all short-term liabilities.

Ways to calculate the influence of certain factors on the level of short-term liquidity [46-50]

Five factors affect the level of liquidity of the company's balance sheet based on the above formula. Their effect can be determined by the method of chain replacement as follows.

1. Short-term liquid to the level of short-term liquidity of the enterprise's balance sheet, i.e. short-term liquidity

the effect of the contribution of funds to all working capital (U_{x1}) is determined as follows:

$$U_{x1} = (X_1^x X_2^p X_3^p X_4^p X_5^p) - U_o = U_{x1} - U_o$$

2. The effect of the change in the result X_2 of the level of supply of immediately liquid funds with working capital is calculated as follows:

$$U_{x2} = (X_1^x X_2^x X_3^p X_4^p X_5^p) - U_{x1} = U_{x2} - U_{x1}$$

3. The X_3 effect of the third factor on the change in the result U_{x3} can be calculated as follows:

$$U_{x3} = (X_1^x X_2^x X_3^x X_4^p X_5^p) - U_{x2} = U_{x3} - U_{x2}$$

4. To determine the X_4 effect of the fourth factor on the change in the result, U_{x4} , it is recommended to use the following formula:

$$U_{x4} = (X_1^x X_2^x X_3^x X_4^x X_5^p) - U_{x3} = U_{x4} - U_{x3}$$

5. X_5 effect of Factor five on change of outcome

U_{x5} is calculated as follows:

$$U_{x5} = (X_1^x X_2^x X_3^x X_4^x X_5^x) - U_{x4} = U_{x5} - U_{x4}$$

The effect of all factors should be equal to the total difference in the result:

$$U = U_{x1} \pm U_{x2} \pm U_{x3} \pm U_{x4} \pm U_{x5}$$

As an example of the liquidity of the balance sheet of the enterprise, let's look at the economic and financial activities of "O'zmevasabzavotuzumsanoat-xolding" in 2000

Nº	Indicators	Year to date	At the end of the year	Difference (+,-)
1.	Current assets ($A_1 + A_2 + A_3$)	8490	9000	+510
2.	Joriy passivlar ($P_1 + P_2$)	3795	3750	-45
3.	Cash and other assets	450	675	+225
4.	Debtors	2850	3000	-150
5.	Current liquidity ratio ($IQ:2Q$)	2,237	2,400	+0,163
6.	Quick Liquidity Ratio ($(3Q + 4Q):2Q$)	0,869	0,980	+0,111
7.	Absolute liquidity ratio ($3Q:2Q$)	0,119	0,180	+0,061

The analysis of the table data shows that the increase of current assets (+510 thousand sums) and decrease of current liabilities (45 thousand sums), reduction of receivables led to positive liquidity coefficients. However, these coefficients indicate that the company is not using its potential effectively. This is because liquidity ratios of 2 or more indicate the stability of the company's financial situation.

In conclusion, it should be noted that in the system of analytical indicators of the company's financial condition, the analysis of the liquidity of the company's balance sheet is one of the most urgent problems, among the indicators of its economic potential, material condition, working capital, labor potential, and financial potential.

REFERENCES:

- [1] Shodiev T.Sh. va boshqalar. Ekonometrika. -T.: TDIU, 2007. -270 b
- [2] Dougherty, Christopher. Introduction to Econometrics. Oxford University Press, 2011, 2006 (4th or 3rd edition) (CD). Russian translation: Dougerti Kr. Vvedenie v ekonometriku. Izd.
- [3] M., INFRA-M, 2009. 3. Dougherty, Christopher. Elements of econometrics. Study Guide. University of London. 2011.

[4] Gujarati D.N. *Basic Econometrics*. McGraw-Hill, 4th edition, 2003 (Gu); 5th edition (2009, Gujarati D.N., and D.C.Porter).

[5] Abdullaev O.M., Xodiev B.Yu., Ishnazarov A.I. *Ekonometrika*. Uchebnik. – T.: Fan va texnologiya. 2007. – 612 s

[6] Eliseeva I.I., Kurisheva S.V. i dr. *Ekonometrika*: Uchebnik.–M.: Finansi i statistika, 2007. –260.

[7] Kremer N.Sh. *Ekonometrika*: Uchebnik. –M.: YuNITI-DANA, 2008. – 562 s.

[8] Greene W.H. *Econometric Analysis*. Prentice Hall int. 5th ed., 2003, and earlier editions (Gr).

[9] Babeshko L.O. *Osnovi ekonometriceskogo modelirovaniya*: Uchebnoe posobie. –M.: KomKniga, 2010. – 520 s.

[10] Gladilin A.V. *Ekonometrika*: Uchebnoe posobie.–M.: KNORUS, 2006. – 250

[11] Ilchenko A.N. *Ekonomiko-matematicheskie metodi*. Uchebnoeposobie. – M.: Finansi i statistika, 2007. –210 s

[12] Kundisheva E.S. *Matematicheskoe modelirovaniye v ekonomike*: Uchebnoe posobie. /pod nauch. red. prof. B.A. Suslakova. – M.: izd. «Dashkov i K°», 2006. – 410 s.

[13] Saitov E.B., Akhmedov U.M. Tracking maximum power point of photovoltaic modules, AIP Conference Proceedings, 2023, 2789, 060005, <https://doi.org/10.1063/5.0145470>

[14] Zikrillayev N., Ayupov K.a Mamarajabova Z.b, Yuldashev I.a, Saitov E.a, Sabitova I.a Adaptation and optimization of a photovoltaic system for a country house, E3S Web of Conferences, 2023, 383, 04054, <https://doi.org/10.1051/e3sconf/202338304054>

[15] Saitov, E., Kudenov, I., Qodirova, F., Askarov, D., Sultonova, M. Analysis of the performance and economic parameters of different types of solar panels taking into account degradation processes. E3S Web of Conferences, 2023, 383, 04059 <https://doi.org/10.1051/e3sconf/202338304059>

[16] Saitov, E., Khushakov, G., Masharipova, U., Mamasaliyev, O., Rasulova, S. Investigation of the working condition of large power solar panel cleaning device. E3S Web of Conferences, 2023, 383, 04060, <https://doi.org/10.1051/e3sconf/202338304060>

[17] Zikrillayev, N., Saitov, E., Toshov, J., Muradov, B., Muxtorov, D. Autonomous Solar Power Plant for Individual use Simulation in LTspice Software Package Booster Voltage Converter. Proceedings of International Conference on Applied Innovation in IT, 2023, 11(1), pp. 207–211, <https://doi:10.25673/101939>

[18] Yuldashev, B., Saitov, E., Khalayarov, J., Toshpulatov, S., Kholmurzayeva, F. Effect of Temperature on Electrical Parameters of Photovoltaic Module. Proceedings of International Conference on Applied Innovation in IT, 2023, 11(1), pp. 291–295, <https://doi:10.25673/101957>

[19] Saitov, E., Jurayev, O., Axrrova, S., Ismailov, J., Baymirzaev, B. Conversion and use of Solar Energy Calculation Methodology for Photovoltaic Systems, Proceedings of International Conference on Applied Innovation in IT, 2023, 11(1), pp. 227–232, <https://doi:10.25673/101942>

[20] Zikrillayev, N.F., Shoabdurahimova, M.M., Kamilov, T., Norkulov, N., Saitov, E.B. Obtaining manganese silicide films on a silicon substrate by the diffusion method. Physical Sciences and Technology, 2022, 9(2), pp. 89–93, <https://doi.org/10.26577/phst.2022.v9.i2.011>

[21] Zikrillayev, N.F., Saitov, E.B., Ayupov, K.S., Yuldashev, I.A. Determination of the resistance of external parameters to the degradation of the parameters of silicon photocells with input nickel atoms. Physical Sciences and Technology, 2022, 9(1), pp. 30–36, <https://doi.org/10.26577/phst.2022.v9.i1.04>

[22] Saitov, E.B., Kodirov, Sh., Beknazarova, Z.F., Nortojiyev, A., Siddikov, N. Developing Renewable Sources of Energy in Uzbekistan Renewable Energy Short Overview: Programs and Prospects. AIP Conference Proceedings, 2022, 2432, 020015, <https://doi.org/10.1063/5.0090438>

[23] E. B. Saitov; T. B. Sodiqov. Modeling an autonomous photovoltaic system in the MATLAB Simulink software environment, AIP Conf. Proc. 2432, 020022 (2022), <https://doi.org/10.1063/5.0089914>

[24] E. B. Saitov, Sh. Kodirov, B. M. Kamanov, N. Imomkulov, I. Kudenov, Increasing the efficiency of autonomous solar photovoltaic installations for power supply of agricultural consumers, AIP Conf. Proc. 2432, 040036 (2022), <https://doi.org/10.1063/5.0090439>

[25] F. Zikrillayev, E. B. Saitov, J. B. Toshov, B. K. Ilyasov, M. B. Zubaydullayev, A software package for determining the optimal composition and parameters of a combined autonomous power supply system based on renewable energy sources, AIP Conf. Proc. 2432, 020021 (2022), <https://doi.org/10.1063/5.0090460>

[26] Zikrillayev Nurullo, Toshov Javohir, Saitov Elyor, Sodikov Temur, Development and selection of equipment for a peak autonomous photo power plant, AIP Conf. Proc. 2552, 030020 (2023) <https://doi.org/10.1063/5.0117594>

[27] Turabdjanov Sadritdin, Toshov Javohir, Saitov Elyor, Axmedov Usmonjon, Research of electrophysical parameters of different types of solar panels taking into account degradation processes, AIP Conf. Proc. 2552, 030019 (2023), <https://doi.org/10.1063/5.0117592>

[28] Yu.M.Kurbanov, E.B.Saitov and B.M.Botirov, Analysis of the influence of temperature on the operating mode of a photovoltaic solar station, IOP Conference Series: Earth and Environmental Science, Volume 614, 1st International Conference on Energetics, Civil and Agricultural Engineering 2020 14–16 October 2020, Tashkent, Uzbekistan, Citation 2020 IOP Conf. Ser.: Earth Environ. Sci. 614 012034, <https://doi:10.1088/1755-1315/614/1/012034>

[29] E.B. Saitov, Optimal model for additional operation of the storage system for photovoltaic wind power plants, E3S Web of Conferences 220, 01080 (2020), <https://doi.org/10.1051/e3sconf/202022001080>

[30] E.B.Saitov, Y.B.Sobirov, I.A.Yuldashev, I.R. Jurayev and Sh.Kodirov, Study of Solar Radiation and

Wind Characteristics in Various Regions of Uzbekistan, E3S Web of Conferences 220, 01061 (2020), <https://doi.org/10.1051/e3sconf/202022001061>

[31] E.B.Saitov, J.B.Toshov, A.O.Pulatov, B.M.Botirov and Yu.M.Kurbanov, Networked interactive solar panels over the roof photovoltaic system (PVS) and its cost analysis at Tashkent state technical University, E3S Web of Conferences 216, 01133 (2020), <https://doi.org/10.1051/e3sconf/202021601133>

[32] E.B. Saitov, Renewable energy development in Uzbekistan: current status, problems and solutions, E3S Web of Conferences 216, 01134 (2020), <https://doi.org/10.1051/e3sconf/202021601134>

[33] Sanjar Shoguchkarov, Isroil Yuldashev, Elyor Saitov and Alisher Boliev, The effect of the surface geometry of a photovoltaic battery on its efficiency, E3S Web of Conferences 216, 01149 (2020), <https://doi.org/10.1051/e3sconf/202021601149>

[34] I.Sapaev, E.Saitov, N.Zoxidov and B.Kamanov, Matlab-model of a solar photovoltaic station integrated with a local electrical network, IOP Conference Series: Materials Science and Engineering, Volume 883, International Scientific Conference Construction Mechanics, Hydraulics and Water Resources Engineering (CONMECHYDRO – 2020) 23-25 April 2020, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan, <https://doi:10.1088/1757-899X/883/1/012116>

[35] Javoxir Toshov and Elyor Saitov, Portable autonomous solar power plant for individual use, E3S Web of Conferences 139, 01087 (2019), <https://doi.org/10.1051/e3sconf/201913901087>

[36] M. K. Bakhadyrkhanov, S. A. Valiev, N. F. Zikrillaev, S. V. Koveshnikov, E. B. Saitov & S. A. Tachilin, Silicon photovoltaic cells with clusters of nickel atoms, Direct Conversion of Solar Energy into Electric Energy, Published: 22 February 2017. Volume 52, pages 278–281, (2016), <https://doi.org/10.3103/S0003701X1604006X>

[37] I. B. Sapaev, B. Sapaev, S. Abdullaev, J. Sh. Abdullaev, A. V. Umarov, R. U. Siddikov, A. A. Mamasoliev and K. S. Daliev. Influence of the parameters to transition capacitance at nCdS-pSi heterostructure, E3S Web of Conferences 413, 04008 (2023) <https://doi.org/10.1051/e3sconf/202341304008>

[38] A. Umarov, U. Abdurakhmanov, Ya. Raximova, M. Karaboeva, D. Saidqulov and F. Boymuratov. Study of the electro and thermophysical properties of composite ceramic materials containing nickel nanoparticles, E3S Web of Conferences 410, 02060 (2023), <https://doi.org/10.1051/e3sconf/202341002060>

[39] A. V. Umarov, H. Kuchkarov and M. Kurbanov. Study and analysis of the IR spectra of a composition based on polyamide filled with iron nanoparticles. E3S Web of Conferences 401, 05085 (2023) <https://doi.org/10.1051/e3sconf/202340105085>

[40] O. G. Abdullaev, Yu. U. Toshmirzaev, T. S. Mirzaev and A. V. Umarov. Mathematical simulation of process of curing auto-filler based on unsaturated

polyester resin. E3S Web of Conferences 401, 05038 (2023), <https://doi.org/10.1051/e3sconf/202340105038>

[41] A. V. Umarov, D. K. Djumabayev, B. A. Mirsalikhov and G. A. Kasimova. Manufacturing technology of photovoltaic devices based on layered compositions and their properties. E3S Web of Conferences 401, 03044 (2023), <https://doi.org/10.1051/e3sconf/202340103044>

[42] A. V. Umarov, B. A. Mirsalikhov, D. K. Djumabayev and F. X. Xusnuddinov. Development and research of layered composite materials based on Cu₂ZnSnS(Se)4 for solar cells. E3S Web of Conferences 401, 05082 (2023), <https://doi.org/10.1051/e3sconf/202340105082>

[43] A. V. Umarov, M. Kurbanov, F. Sh. Xusniddinov, B. S. Abdullaeva and M. Y. Mansurova. Study of thermophysical properties of polyamide-based nanocomposites filled with iron nanoparticles, E3S Web of Conferences 401, 05037 (2023), <https://doi.org/10.1051/e3sconf/202340105037>

[44] O. G. Abdullaev, A. V. Umarov, N. Abdukelimu, H. A. Aisa and B. S. Abdullaeva. Investigation of some physico-chemical properties of Elaeagnus L. GUM. E3S Web of Conferences 401, 03032 (2023), <https://doi.org/10.1051/e3sconf/202340103032>

[45] A. V. Umarov, N. Makhmudov, Sh. Eshkuvvatov, B. S. Abdullaeva and G. A. Kasimova. Analysis of technology methods and study of properties of high-temperature superconducting ceramics based on YTTRIUM. E3S Web of Conferences 401, 05040 (2023), <https://doi.org/10.1051/e3sconf/202340105040>

[46] Abdurakhmanov. U, Umarov. A.V, Raximova. Y.M, Saidkulov, D., Matyakubov, B.M. An Investigation of the Electrophysical Properties of Composite Ceramic Materials Containing Nickel Nanoparticles. Physical Chemistry Research, 2023, 11(2), страницы 231–239, <https://doi.org/10.22036/pcr.2022.335151.2063>

[47] I. Sapaev, B. Sapaev, D. Abdullaev, J. Abdullayev, A. Umarov, R. Siddikov, A. Mamasoliev and K. Daliev. Influence of the parameters to transition capacitance at NCDS-PSI heterostructure, E3S Web of Conferences 383, 04022 (2023), <https://doi.org/10.1051/e3sconf/202338304022>

[48] Umarov. A.V, Current status and trends in the physicochemical properties of nanomaterials and nanotechnology researches, E3S Web of Conferences 410, 02060 (2023), <https://doi.org/10.1051/e3sconf/202341002060>

[49] Umarov. A, Kurbonov. M, Kuchkarov. K, Kasimova. G, Electrical and Mechanical Properties of a Polyamide-6-Based Composition Filled with Iron Nanoparticles, AIP Conference Proceedings, 2022, 2432, 020012, <https://doi.org/10.1063/5.0089975>

[50] Sapaev. I.B, Sapaev. B, Umarov. A.V, Kamalova. D.I, Kasimova. G.A, Electrophysical Properties of Layout Composition of n+CdsS-nSdS-nSi Structure, AIP Conference Proceedings, 2022, 2432, 020007, <https://doi.org/10.1063/5.0089905>