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 The presented article discusses the Fourier method of 

separation of variables for solving the Laplace equation in a 

rectangular domain with Neumann boundary conditions. The 

main stages of this method are subsequently revealed: 

1. Representation of the general solution of the Laplace 

equation in a rectangular domain using Fourier series. 

2. Satisfying the Neumann boundary conditions using 

Fourier series. 

3. Constructing the solution of the Neumann problem, 

including the expansion of the boundary functions into Fourier 

series, determining the Fourier coefficients, and writing the 

final solution in the form of a Fourier series. 

4. Analysis of the properties of the obtained solution, 

including its uniqueness, smoothness, continuity, and physical 

interpretation. 
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Introduction 

The Neumann problem for the Laplace equation is one of the key boundary value 

problems of mathematical physics. It describes the distribution of physical fields, such as 

temperature, electric potential, or gravitational potential, within a two- or three-dimensional 

region for given fluxes or derivatives of these fields at the boundary of the region. 

This paper considers the solution of the Neumann problem for the Laplace equation in a 

rectangular domain by the Fourier variable separation method. This approach allows us to 

obtain an analytical solution to the problem in the form of a convergent Fourier series. 

Solving the Neumann problem in a rectangle is important for many applications, such as: 

1. Calculation of temperature fields in the walls and structures of buildings; 

2. Modeling the distribution of electric and gravitational fields; 

3. Analysis of problems of filtration and diffusion in porous media. 

In addition, this problem is a good model problem for studying methods for solving partial 

differential equations with inhomogeneous boundary conditions. Constructing a solution using 

Fourier series expansion demonstrates the power of this method and its applicability to a wide 

range of boundary value problems. 

Thus, the study of the solution of the Neumann problem for the Laplace equation in a 

rectangle by the Fourier method is of both theoretical and practical interest. 
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Fourier variable separation method 

The Neumann problem in a rectangle is given in the Laplace equation, which has some 

definition. Thus, Laplace's equation is one of the fundamental differential equations in 

mathematical physics. It has the following definition and properties. 

Laplace's equation is a second-order linear partial differential equation that is written in 

the form: 

𝛻2𝑢 = 0 

Here 𝛻2 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
𝑢(𝑥, 𝑦, 𝑧) is the Laplace operator acting on the scalar field. 

Laplace's equation describes stationary (equilibrium) states of various physical fields, 

such as stationary temperature distribution (thermal conductivity), stationary electric or 

magnetic fields (electrostatics, magnetostatics), stationary concentration fields (diffusion), 

stationary hydrodynamic flows (Laplace's equation for the stream function). 

Solutions of Laplace's equation have the property of harmonicity - the value of the 

function at any point is the arithmetic mean of the values at surrounding points. The solutions 

are infinitely differentiable within the domain of definition where Laplace's equation holds.𝑢 

Maximum principle - the maximum and minimum values of the solution are achieved at 

the boundary of the region, and not inside. To find a unique solution to Laplace's equation, it is 

necessary to set the appropriate boundary conditions at the boundary of the region. 

Dirichlet conditions: 𝑢 = 𝑓 at the boundary of the region; 

Neumann conditions: 
𝜕𝑢

𝜕𝑛
= 𝑔 at the border of the region. 

Thus, Laplace's equation is a key equation of mathematical physics, describing a wide 

range of stationary physical processes. Its properties and boundary conditions determine the 

uniqueness and smoothness of solutions in various areas. 

Now, the Laplace equation in Cartesian coordinates (x, y) for the case under study has the 

form: 

Δ𝑥 =
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 

Where is the desired function, representing, for example, temperature, electric or 

gravitational potential.𝑢 = 𝑢(𝑥, 𝑦) 

And for the general task:(𝑥1, 𝑥2, … , 𝑥𝑛) 

Δ𝑥 =
𝜕2𝑢

𝜕𝑥1
2 +

𝜕2𝑢

𝜕𝑥2
2 + ⋯ +

𝜕2𝑢

𝜕𝑥𝑛
2

= 0 

 

For a rectangular region, the general solution to Laplace's equation can be represented as 

a Fourier series:𝛺 = {(𝑥, 𝑦)|0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏} 

𝑢(𝑥, 𝑦) = ∑ [
(𝐴𝑛 cos (

𝑛𝜋𝑥

𝑎
) + 𝐵𝑛 sin (

𝑛𝜋𝑥

𝑎
)) ∗

∗ (𝐶𝑛 cosh (
𝑛𝜋𝑦

𝑏
) + 𝐷𝑛 sinh (

𝑛𝜋𝑦

𝑏
))

]

𝑛

 

Where the summation occurs over all natural numbers.𝑛 

The Fourier coefficients are determined from the boundary conditions imposed on the 

function at the edges of the rectangle.𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛𝑢(𝑥, 𝑦) 
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This representation of the solution in the form of a double trigonometric series has a 

number of important properties: 

1. Convergence of series in classical function spaces. 

2. Ability to satisfy various types of boundary conditions (Dirichlet, Neumann, mixed). 

3. Ease of calculating derivatives and integrals of the solution. 

4. Visual physical interpretation of the terms of the series. 

Thus, the representation of the general solution of the Laplace equation in a rectangle in 

the form of a Fourier series is a powerful and universal mathematical tool for solving a wide 

class of boundary value problems. 

Satisfying the Neumann boundary conditions using Fourier series when solving the 

Neumann problem for the Laplace equation in a rectangle by the Fourier method can be done 

as follows. In the Neumann problem for the Laplace equation in a rectangular region 

𝛺 = {(𝑥, 𝑦)|0 < 𝑥 <  𝑎, 0 <  𝑦 <  𝑏}  

you need to find a function that satisfies:𝑢(𝑥, 𝑦) 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0 в 𝛺 

𝜕𝑢

𝜕𝑛
= 𝑔(𝑥, 𝑦) на границе 𝛺 

Where is a given flow function or derivative on the boundary.𝑔(𝑥, 𝑦) 

To satisfy the Neumann boundary conditions when using the Fourier variable separation 

method, the solution is represented as a series:𝑢(𝑥, 𝑦) 

𝑢(𝑥, 𝑦) = ∑ [
(𝐴𝑛 cos (

𝑛𝜋𝑥

𝑎
) + 𝐵𝑛 sin (

𝑛𝜋𝑥

𝑎
)) ∗

∗ (𝐶𝑛 cosh (
𝑛𝜋𝑦

𝑏
) + 𝐷𝑛 sinh (

𝑛𝜋𝑦

𝑏
))

]

𝑛

 

Fourier coefficients are determined from the conditions:𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛 

𝜕𝑢

𝜕𝑛
= ∑ [

(−
𝑛𝜋

𝑎
∗ 𝐴𝑛 sin (

𝑛𝜋𝑥

𝑎
) +

𝑛𝜋

𝑎
∗ 𝐵𝑛 cos (

𝑛𝜋𝑥

𝑎
)) ∗

∗ (𝐶𝑛 cosh (
𝑛𝜋𝑦

𝑏
) + 𝐷𝑛 sinh (

𝑛𝜋𝑦

𝑏
))

]

𝑛

=  𝑔(𝑥, 𝑦) 

In this case, such an expression is determined at the boundary of the study area. Thus, the 

boundary value problem is reduced to the problem of determining the coefficients of the 

Fourier series from a known boundary function. This problem can be solved using various 

methods, for example:𝑔(𝑥, 𝑦) 

Construction of a solution to the Neumann problem 

To construct a solution to the Neumann problem for the Laplace equation in a rectangular 

domain using the Fourier variable separation method, it is necessary to expand the given 

boundary function into a Fourier series:𝑢(𝑥, 𝑦)𝑔(𝑥, 𝑦) 

𝑔(𝑥, 𝑦) = ∑ (𝑎𝑛 cos (
𝑛𝜋𝑥

𝑎
) + 𝑏𝑛 sin (

𝑛𝜋𝑥

𝑎
))

𝑛

 

Where the Fourier coefficients and are determined by the formulas:𝑎𝑛𝑏𝑛 

𝑎𝑛 = (
2

𝑎
) ∗ ∫ 𝑔(𝑥, 0) ∗ cos (

𝑛𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0
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𝑏𝑛 = (
2

𝑎
) ∗ ∫ 𝑔(𝑥, 0) ∗ sin (

𝑛𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0

 

Similarly, it is laid out in a row:𝑔(𝑥, 𝑏) 

𝑔(𝑥, 𝑏) = ∑ (𝑐𝑛 cos (
𝑛𝜋𝑥

𝑎
) + 𝑑𝑛 sin (

𝑛𝜋𝑥

𝑎
))

𝑛

 

Where: 

𝑐𝑛 = (
2

𝑎
) ∗ ∫ 𝑔(𝑥, 𝑏) ∗ cos (

𝑛𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0

 

𝑑𝑛 = (
2

𝑎
) ∗ ∫ 𝑔(𝑥, 𝑏) ∗ sin (

𝑛𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0

 

Now, substituting the expansions of boundary functions into the Neumann condition, we 

obtain: 
𝜕𝑢

𝜕𝑛
= (−

𝑛𝜋

𝑎
∗ 𝐴𝑛 sin (

𝑛𝜋𝑥

𝑎
) +

𝑛𝜋

𝑎
∗ 𝐵𝑛 cos (

𝑛𝜋𝑥

𝑎
)) ∗ 

∗ (𝐶𝑛 cosh (
𝑛𝜋𝑦

𝑏
) + 𝐷𝑛 sinh (

𝑛𝜋𝑦

𝑏
)) = 

= ∑ (𝑎𝑛 cos (
𝑛𝜋𝑥

𝑎
) + 𝑏𝑛 sin (

𝑛𝜋𝑥

𝑎
))

𝑛

 на 𝑦 = 0 

= ∑ (𝑐𝑛 cos (
𝑛𝜋𝑥

𝑎
) + 𝑑𝑛 sin (

𝑛𝜋𝑥

𝑎
))

𝑛

 на 𝑦 = 𝑏 

From here you can determine the Fourier coefficients by solving a system of linear 

equations. As a result, we obtain an analytical solution in the form of a Fourier series that 

satisfies the given Neumann boundary conditions. Thus, the expansion of boundary functions 

into Fourier series is a key step in constructing a solution to the Neumann problem for the 

Laplace equation in a rectangle by the method of separation of variables.𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛, 𝑢(𝑥, 𝑦) 

To determine the Fourier coefficients, it is necessary to satisfy the Neumann boundary 

conditions:𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛 

𝜕𝑢

𝜕𝑛
= ∑ [

(−
𝑛𝜋

𝑎
∗ 𝐴𝑛 sin (

𝑛𝜋𝑥

𝑎
) +

𝑛𝜋

𝑎
∗ 𝐵𝑛 cos (

𝑛𝜋𝑥

𝑎
)) ∗

∗ (𝐶𝑛 cosh (
𝑛𝜋𝑦

𝑏
) + 𝐷𝑛 sinh (

𝑛𝜋𝑦

𝑏
))

]

𝑛

= 𝑔(𝑥, 𝑦) 

As indicated, the presented expression is determined at the boundary of the region. At the 

same time, using the expansion of the boundary function g(x, y) into a Fourier series: 

𝑔(𝑥, 0) = ∑ (𝑎𝑛 cos (
𝑛𝜋𝑥

𝑎
) + 𝑏𝑛 sin (

𝑛𝜋𝑥

𝑎
))

𝑛

 

𝑔(𝑥, 𝑏) = ∑ (𝑐𝑛 cos (
𝑛𝜋𝑥

𝑎
) + 𝑑𝑛 sin (

𝑛𝜋𝑥

𝑎
))

𝑛

 

Where the coefficients are determined by the formulas:𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛 

𝑎𝑛 = (
2

𝑎
) ∗ ∫ 𝑔(𝑥, 0) ∗ cos (

𝑛𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0
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𝑏𝑛 = (
2

𝑎
) ∗ ∫ 𝑔(𝑥, 0) ∗ sin (

𝑛𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0

 

𝑐𝑛 = (
2

𝑎
) ∗ ∫ 𝑔(𝑥, 𝑏) ∗ cos (

𝑛𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0

 

𝑑𝑛 = (
2

𝑎
) ∗ ∫ 𝑔(𝑥, 𝑏) ∗ sin (

𝑛𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0

 

Substituting these expressions into the Neumann boundary condition, we obtain a system 

of linear equations for determining the Fourier coefficients: 

(−
𝑛𝜋

𝑎
∗ 𝐴𝑛) ∗ (𝐶𝑛 cosh(𝑛𝜋) + 𝐷𝑛 sinh(𝑛𝜋)) = 𝑎𝑛 

(
𝑛𝜋

𝑎
∗  𝐵𝑛) ∗  (𝐶𝑛 cosh(𝑛𝜋) + 𝐷𝑛 sinh(𝑛𝜋)) = 𝑏𝑛 

(−
𝑛𝜋

𝑎
∗  𝐴𝑛) ∗  (𝐶𝑛 cosh(𝑛𝜋) −  𝐷𝑛 sinh(𝑛𝜋)) = 𝑐𝑛 

(
𝑛𝜋

𝑎
∗ 𝐵𝑛) ∗  (𝐶𝑛 cosh(𝑛𝜋) −  𝐷𝑛 sinh(𝑛𝜋)) = 𝑑𝑛 

𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛are the Fourier coefficients of the expansion of the boundary 𝑔(𝑥, 𝑦) function 

on the boundary of the rectangle. 

𝐴𝑛, 𝐵𝑛– Fourier coefficients in x. 

𝐶𝑛, 𝐷𝑛– Fourier coefficients in y. 

Solving this system, we find the coefficients. Substituting them into the expression for , 

we obtain the final analytical solution of the Neumann problem in the form of a Fourier 

series.𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛𝑢(𝑥, 𝑦) 

Thus, determining the Fourier coefficients is a key step in constructing a solution to the 

Neumann problem for the Laplace equation in a rectangle by the method of separation of 

variables. 

The final solution to the Neumann problem for the Laplace equation in a rectangle in the 

form of a Fourier series has the following form: 

𝑢(𝑥, 𝑦) = ∑ [
(𝐴𝑛 cos (

𝑛𝜋𝑥

𝑎
) + 𝐵𝑛 sin (

𝑛𝜋𝑥

𝑎
)) ∗

∗ (𝐶𝑛 cosh (
𝑛𝜋𝑦

𝑏
) + 𝐷𝑛 sinh (

𝑛𝜋𝑦

𝑏
))

]

𝑛

 

Where the coefficients are determined from the system of linear equations presented 

above.𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛 

Thus, the solution to the Neumann problem for the Laplace equation in a rectangle is 

represented as an infinite Fourier series, where each member of the series is the product of 

trigonometric functions in x and hyperbolic functions in .𝑦 

This analytical solution in the form of a Fourier series allows you to obtain detailed 

information about the behavior of the desired function at any point in the rectangular region, 

as well as to study the distribution of potential or flux at the boundary.𝑢(𝑥, 𝑦) 

Notes and comments:Solution Properties 

The uniqueness of the solution to the Neumann problem is an important property that 

guarantees that there is one and only one solution for the posed boundary value problem. The 
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existence and uniqueness of a solution to the Neumann problem for the Laplace equation in a 

bounded domain with a smooth boundary 𝜕𝛺 is proved as follows. 

The existence of a solution is proven using variational methods, in particular using the 

Lax-Milgram theorem; it is shown that the Neumann problem is equivalent to minimizing a 

linear functional on a set of functions satisfying the Neumann conditions, and from the Lax-

Milgram theorem it follows that this minimization problem has a unique solution, which is the 

solution to the Neumann problem. 

The uniqueness of the solution is proved by contradiction. It is assumed that there are 

two solutions to the Neumann boundary value problem. The difference of these solutions also 

satisfies the homogeneous Neumann conditions.𝑤 = 𝑢1 − 𝑢2 

It is further shown that on 𝑤 ≡ 0, which is equivalent to 𝛺, that is, the solution to the 

Neumann boundary value problem is unique. Thus, the proof of the uniqueness of the solution 

to the Neumann problem is based on the properties of linear elliptic boundary value problems 

and the use of variational methods. This is an important result, since it guarantees that the 

solution to the Neumann problem, found analytically or numerically, will be unique.𝑢1 ≡ 𝑢2 

The smoothness and continuity of the solution to the Neumann problem for the Laplace 

equation in a rectangle has the following properties. Thus, the solution to the Neumann 

problem for the Laplace equation in a rectangular domain is an infinitely differentiable function 

inside the domain, that is, smooth. This follows from the fact that Laplace's equation is a linear 

elliptic equation, the solution of which within the domain has a high degree of 

smoothness.𝑢(𝑥, 𝑦)𝛺𝛺𝛻2𝑢 = 0 

Since the Neumann boundary conditions are also smooth at the boundary, the solution 

will have continuous derivatives of any order inside the rectangle.
𝜕𝑢

𝜕𝑛
= 𝑔𝜕𝛺𝑢(𝑥, 𝑦)𝛺 

The solution to the Neumann problem 𝑢(𝑥, 𝑦)is continuous up to the boundary 𝜕𝛺 of the 

rectangular region. The proof of the continuity of the solution
𝜕𝑢

𝜕𝑛
= 𝑔𝑢(𝑥, 𝑦) is based on the 

maximum principle for elliptic equations. Since the Neumann boundary conditions specify a 

continuous function at the boundary, the solution will also be continuous up to the boundary. 

Although the solution is continuous on the boundary ∂Ω, its normal derivative may have 

discontinuities at the corners of the rectangle. These discontinuities arise due to kinks in the 

boundary at the corners where the Neumann condition is specified. Despite discontinuities in 

the derivative, the solution itself remains continuous along the entire boundary. Thus, the 

solution to the Neumann problem for the Laplace equation in a rectangular region has a high 

degree of smoothness inside the region and continuity up to the boundary. The features 

associated with the kinks of the boundary appear only in the behavior of the normal derivative 

of the solution. 

The physical interpretation of the solution to the Neumann problem for the Laplace 

equation in a rectangle has some definite meaning for the selected results. 

1. Simulation in a stationary field of a scalar quantity 

The solution to the Neumann problem for the Laplace equation describes the stationary 

(steady-state) spatial distribution of some scalar quantity in a rectangular region. 

This scalar quantity can have a different physical nature: temperature, electric potential, 

concentration of a substance, etc. 
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2. Physically specified Neumann boundary conditions 

The Neumann boundary conditions at the boundary specify the normal flow of this scalar 

quantity across the boundary. Physically, this can be interpreted as a given heat flow, electric 

current, or diffusion flow at the boundary of the region.
𝜕𝑢

𝜕𝑛
= 𝑔𝜕𝛺 

3. Using internal distribution 

The solution inside the rectangular region determines the spatial distribution of the scalar 

quantity consistent with the specified Neumann boundary conditions. This distribution obeys 

Laplace's equation, which describes the equilibrium (stationary) state of the 

system.𝑢(𝑥, 𝑦)𝛺𝛻2𝑢 = 0 

The solution of the Neumann problem for the Laplace equation in a rectangle finds its 

practical application in modeling a wide range of physical processes: thermal conductivity, 

diffusion, electrostatics, hydrodynamics, etc. Knowing the boundary flows, it is possible to 

determine the internal distribution of the corresponding physical quantity, which is important 

for the analysis and optimization of these processes. 

Thus, solving the Neumann problem for the Laplace equation in a rectangular region has 

a deep physical meaning and broad practical applications in various fields of science and 

technology. 

Conclusion: 

In the course of this work, the solution of the Neumann problem for the Laplace equation 

in a rectangular region was examined in detail by the Fourier series expansion method. 

The main theoretical aspects of the Neumann problem were studied, including proofs of 

the existence and uniqueness of its solution. It is shown that the Neumann problem is 

equivalent to minimizing a linear functional, which allows the use of variational methods to find 

a solution. 

A general analytical formula for solving the Neumann problem in the form of an infinite 

Fourier series is derived. This formula contains Fourier coefficients, which are found from a 

system of linear equations. Thus, the solution is represented as a sum of products of 

trigonometric and hyperbolic functions. 

The resulting analytical solution in the form of a Fourier series allows us to study in detail 

the behavior of the desired function u(x,y) in the entire rectangular region, as well as analyze 

the distribution of potential or flow at the boundary. This is an important property that makes 

the Fourier method an effective tool for solving the Neumann problem. 

In general, the work demonstrates a systematic approach to solving the Neumann 

problem for the Laplace equation in a rectangle using the Fourier series expansion. The results 

obtained can be used in analytical research and numerical modeling of a wide class of applied 

problems described by the Laplace equation with Neumann boundary conditions. 
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